微型 LED 的最新进展

时间:2024-07-09 13:12:25 浏览量:0

Abstract With the advent of technologies such as augmented/virtual reality (AR/VR) that are moving towards displays with high efficiency, small size, and ultrahigh resolution, the development of optoelectronic devices with scales on the order of a few microns or even smaller has attracted considerable interest. In this review article we provide an overview of some of the recent developments of visible micron-scale light emitting diodes (LEDs). The major challenges of higher surface recombination for smaller size devices, the difficulty in attaining longer emission wavelengths, and the complexity of integrating individual, full color devices into a display are discussed, along with techniques developed to address them. We then present recent work on bottom-up nanostructure-based submicron LEDs, highlighting their unique advantages, recent developments, and promising potential. Finally, we present perspectives for future development of micro-LEDs for higher efficiencies, better color output and more efficient integration.


Introduction 

III-V  semiconductor  optoelectronic  devices  have  been widely used in a variety of fields, such as in illumination, displays,  data  communication,  horticulture,  and  biological detection.  To  date,  however,  these  applications  required individual devices to be relatively large, of the order of a few hundred of microns or more, often driven by the need to maximize the output power1–3 . Now, the development of advanced  displays  with  ultrahigh  resolution  (e.g.,  >2,000 pixel  per  inch  (PPI)),  especially  those  for  augmented  and virtual  reality  (AR  and  VR),  makes  it  necessary  to  use smaller  device  sizes  for  improving  the  resolution4 . Biomedical  and  visible-light  communication  applications of microscale light sources have also been of great interest recently4–7 .  The  micro-LED  devices  would  have  the benefits  of  higher  self-emissive  brightness,  ultra-high integration density, robustness and stability as compared to existing  technologies,  such  as  liquid  crystal  displays (LCDs)  and  organic  light  emitting  diodes  (OLEDs)8 .  A comparison of these technologies is shown in Table 1.


The  pioneering  technology  for  modern  displays  was LCDs,  using  liquid  crystals  to  block  emission  from  a backlight,  and  colors  were  attained  through  color  filters. However,  it  had  some  limitations  including  color saturation,  slow  response  times  and  poor  conversion efficiency.  More  importantly,  a  large  fraction  of  the optical  power  generated  from  the  backlight  was  being wasted  in  these  displays  as  they  were  not  self-emitting. LCD displays are also difficult to scale down to small sizes with  high  resolution.  Therefore,  displays  moved  towards more  energy-efficient  self-emitting  displays  comprised  of LEDs,  which  could  be  either  inorganic  (e.g.,  III-nitride based) or organic LEDs. While OLEDs have been widely adopted in displays, they are not without their limitations. Primary  among  them  is  the  limited  brightness  of  OLEDs (<1000  cd/m2 )  which  is  a  major  drawback.  OLEDs  also suffer  from  an  efficiency  roll-off  at  higher  injection currents, resulting in significantly lower output power than inorganic LEDs. Furthermore, OLEDs need longer burnin times, and they are highly resistive, usually operating at current densities on the order of mA/cm2 from Refs. Moreover, it has remained challenging to achieve high PPI OLED displays due to the shadow effect of the fine metal mask  used  to  define  pixels.  It  has  also  been  difficult  to achieve  high  efficiency  OLEDs  at  shorter  emission wavelengths (higher energy photons), severely limiting the performance  of  blue-emitting  devices.  Generally speaking, the maximum operational temperature of OLEDs is  limited  to  50-70  ˚C,  and  they  have  much  shorter lifetimes  than  inorganic  devices.  These  issues  can  be readily  solved  by  using  inorganic  LEDs,  which  have excellent  stability,  robustness,  brightness,  and  long lifetimes.  Inorganic  LEDs  typically  reach  their  peak efficiencies at current densities of ~0.1-100 A/cm2 , making them extremely bright with output luminance greater than 100,000 cd/m2 from Ref. . – a necessity for high-power applications.  These  features  have  led  to  their  widespread adoption  in  diverse  applications  such  as  general  lighting, automotives, horticulture and medicine.


They measured a maximum EQE of ~7% for green microLEDs  with  device  dimensions  of  6 × 6  μm37.  For  devices with red emission, P. Li et al. have examined in detail the temperature dependent properties of red micro-LEDs with an area of 60 μm × 60 μm, and a peak EQE of 3.2% 38. They have  also  demonstrated  a  red-emitting  micro-LED  with  a tunnel junction contact, having a maximum EQE of 4.5% . Recently, Y.M. Huang et al. reported a 6 μm × 25 μm sized red  micro-LED  with  a  peak  EQE  of  5.02%,  with  a  focus for visible light communication applications40. A peak EQE of  1.75% has  also  been  demonstrated  for  a  device  with 2 μm diameter. The EQE of some III-nitride based LEDs from literature, of different emission colors, are plotted in Fig. 1 for varying device active areas. The EQE of the  LEDs  shows  a  drastic  reduction  when  the  area  of  the LEDs  becomes  smaller  for  all  wavelengths.  This  reduced efficiency greatly inhibits the commercialization of microLED technology. The causes for this efficiency cliff will be discussed in the next section.


33

Fig. 1 


Regarding  the  emission  wavelength  of  devices, conventionally,  the  III-nitrides  (AlInGaN)  are  more generally used for shorter wavelength blue-green emission, whereas  the  smaller  bandgaps  of  AlInGaP  alloys  make them  better  suited  for  yellow-red  emission.  However, specifically  for  micro-LEDs,  several  factors  have motivated the investigation of using InGaN to cover long wavelength  red  devices  as  well.  Firstly,  the  bandgaps attainable through the InGaN material system can cover the entire visible spectrum, which could enable full-color redgreen-blue (RGB) devices made from a single material. It has  also  been  shown  that  InGaN-based  LEDs  are significantly less impacted by temperature due to the better quantum-confinement  of  charge  carriers,  as  compared  to AlInGaP  devices,  which  improves  their  usability  in applications  where  heating  can  affect  performance102 . Finally,  and  most  importantly,  a  lower  surface  recombination velocity has been measured in the III-nitrides, as compared  to  AlInGaP,  making  them  a  preferable alternative  for  small-area  devices.  This  is  due  to  the increase  in  the  dominant  effect  of  surface  recombination for micro-LEDs especially those with dimensions < 5 μm, which have a high surface-area to volume ratio.


There is a large lattice mismatch between the constituent binary compounds of InGaN alloys – InN and GaN have a lattice  mismatch  of  ~10%.  This  makes  it  extremely difficult  to  grow  high-quality  InGaN  epilayers  with emission  in  the  green  and  red  regions  of  the  visible spectrum,  due  to  the  tendency  of  InGaN  to  form  defects and dislocations. The low miscibility of InGaN alloys also causes significant phase separation for high In content alloys,  which  results  in  broad  luminescence  peaks  that make  it  hard  to  achieve  pure  red  emission.  Another consequence  of  the  lattice  mismatch  is  that  the  grown InGaN epilayers would also be under a large compressive strain, and the resulting strong piezoelectric field spatially separates  the  electron  and  hole  wavefunctions.  The reduced  overlap  of  the  carrier  wavefunctions  limits radiative  carrier  recombination,  further  reducing  the internal  quantum  efficiency  (IQE).  The  emission  color  of the  generated  light  also  depends  on  the  injected  carrier density.  At  low  carrier  injections  where  the  piezoelectric polarization fields cause severe band bending, the emission energy  is  lower  than  the  bandgap  of  the  alloy.  At  higher injection  currents,  where  the  injected  carriers  can  screen the  polarization  fields,  thereby  flattening  the  bands,  the emission  wavelength  shifts  closer  to  the  bandgap.  This quantum-confined  Stark  effect  (QCSE)  implies  a  current dependance for the emission color, limiting the applicable brightness range of practical color devices.


Various  methods  have  been  developed  to  enable efficient red emission of InGaN. High-efficiency large-area red and orange LEDs were demonstrated by implementing V-pits  to  relax  compressive  strain,  thereby  helping  to increase indium incorporation. The V-pits are usually formed  at  the  start  of  the  growth  of  the  low  temperature layer,  extending  through  the  active  region.  They  can  help enhance  the  injection  of  carriers,  as  holes  can  be transported from the semi-polar facets of the V-pit into the deeper  quantum  wells.  With  the  use  of  this  technique,  an EQE  of  24% was  attained  for  a  large-area  1  mm2 LED having  emission  at  608  nm.  However,  while  the  average size  and  density  of  V-pits  can  be  somewhat  controlled, their  location  cannot,  which  is  a  major  detriment  to  their inclusion  in  small-area  micro-LEDs,  where  individual devices may randomly contain a few of them.


A schematic of the SAE process used in plasma-assisted molecular beam epitaxy is shown in Fig. 2a. Through this process,  highly  uniform  arrays  can  be  grown  over relatively large areas, shown in Fig. 2b. The composition of the alloys can be readily tuned by adjusting the ratio of the metal  fluxes  for  the  constituent  elements  (In  and  Ga). Photoluminescence  spectra  from  nanostructures  grown using  this  method  are  shown  in Fig. 2c,  with  emission covering the entire visible spectrum. As the incorporation of  In  depends  strongly  on  the  arrangement  of nanostructures,  due  to  effects  such  as  adatom  migration and flux shadowing from adjacent structures, through this method  multiple  different  InGaN  emission  colors  can  be attained.


78

Fig. 2


To  fabricate  the  nanowires  into  micro-LEDs,  nanowire arrays  were  first  filled  with  Al2O3 deposited  by  ALD, which  was  then  etched  back  to  reveal  the  top  of  the nanowires.  Plasma-enhanced  chemical  vapor  deposition (PECVD)  was  then  used  for  depositing  a  thick  SiO2 insulation  layer.  Stepper  lithography  was  used  to  etch injection vias into the SiO2 layer to define the active area of  the  devices.  Finally  metal  contacts  were  deposited  and annealed. Fabricated devices exhibited relatively good I-V characteristics, and strong green electroluminescence (EL), as  shown  in Fig. 3a.  As  the  growth  of  the  InGaN  was primarily  along  the  semi-polar  facets  of  the  Ga-polar nanowires,  the  reduced  polarization  fields  resulted  in  a small  wavelength  shift  with  injection  current,  with  EL spectra at different currents plotted in Fig. 3b. For microLEDs having an area of 3 μm × 3 μm, a maximum EQE of ~5.5% was  measured  at  a  current  density  of  ~3.4  A/cm2 , shown  in Fig. 3c.  Furthermore,  as  the  micro-LEDs  were fabricated  in  arrays  of  nanowires,  with  individual nanowires  having  identical  emission  and  morphology, there  were  relatively  small  variations  in  the  normalized EQE  of  different  area  devices  formed  in  the  same  array, shown in Fig. 3d.


90

Fig. 3


Taking  advantage  of  these  benefits,  high  efficiency  Npolar  green  nanowire  sub-micron  scale  LEDs  have  been demonstrated.  To  ensure  the  N-polarity  of  the  grown nanowires, an N-polar GaN substrate was used for seeding the  initial  nanowire  nucleation.  Over  a  base  n-GaN segment, a six-period InGaN quantum disk/AlGaN barrier active  region  was  grown,  followed  by  a  p-type  AlGaN electron  blocking  layer  and  a  p-GaN  contact  layer.  A schematic of the nanowires and their structure is shown in Fig. 4a.  SEM  images  of  the  nanowires  following  growth confirm  the  uniform  morphology  and  flat  top  surface, shown in Fig. 4b. Similar to studies on Ga-polar structures, an  AlGaN  shell  was  formed,  protecting  the  active  region from  surface  recombination.  This  was  confirmed  with elemental  mapping  of  the  active  region,  presented  in Fig. 4c, for In and Al. High resolution atomic-scale images shown  in Fig. 4d also  confirmed  the  N-polarity  of  the grown nanowires.


91

Fig. 4


In  polar  semiconductors  such  as  InGaN,  the  distinct ionic character can lead to strong electron phonon coupling effect,  which  may  significantly  impact  their  electronic, optical  and  excitonic  properties.  Recent  theoretical  and experimental studies have revealed that the exciton binding energy  in  nanoscale  III-nitride  heterostructures  can  be dramatically  increased,  compared  to  their  bulk structures.  As  an  example,  the  exciton  oscillator strength  can  be  enhanced  by  one  to  two  orders  of magnitude  in  InGaN  nanostructures  with  efficient  strain relaxation.  Theoretical  studies  have  further  shown  that polaronic exciton contribution to the binding energy can be as large as 190 meV in GaN nanowires. Moreover, recent studies  have  shown  that  the  strong  exciton-phonon interaction, i.e., the  formation  of  polaronic  excitons,  can further impact the charge carrier transport, relaxation, and recombination. For example, the unique polaronic exciton effect  can  transform  an  indirect  bandgap  h-BN  to  be extremely bright light emitters in the deep UV. As such, we envision that a fundamental study of excitons in InGaN deep  nanostructures  could  offer  a  path  to  break  the efficiency bottleneck of micro and nanoscale LEDs.


The  potential  uses  for  micro-LED  technologies  have motivated  considerable  resources  into  their  development. While obstacles remain in the path of nanostructure-based micro-LEDs,  they  can  be  solved  by  a  fundamental understanding  of  the  physics  and  properties  of  III-nitridenanostructures and the further development and refinement of the epitaxy and fabrication methodologies. Accordingly, III-nitride  nanostructures  offer  a  very  promising  path  to overcome  the  efficiency,  scaling,  and  integration challenges  of  micro-LEDs  for  many  emerging  and demanding applications.


文件下载请联系管理员: 400-876-8096